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satisfies (1.73) in the steady state.

As a final observation we note that the boson commutation relation is
preserved in time — at least in the mean, which is all we can say in the
Schrédinger picture. Using the initial time commutator we find

{[a,a](t)) = tr{la, a’]p(t)} = tr{p(t)} = 1;

it is readily shown that (1.73) preserves the trace of the density operator.

1.5 Two-Time Averages
and the Quantum Regression Theorem

We have developed a formalism which allows us, in principle, to solve for the
density operator (reduced density operator) for a system interacting with a
reservoir. From this density operator we can obtain time-dependent expec-
tation values for any operator acting in the Hilbert space of the system S.
What, however, about products of operators evaluated at two different times?
Of particular interest, for example, will be the first-order and second-order
correlation functions of the electromagnetic field. For a single mode these are
given by
GO(t,t +7) (ol (t)a(t + 7)),

GA(t,t + 1) o (af (t)a’r it +1)a(t + 7)a(t)).

The first-order correlation function is required for calculating the spectrum
of the field. The second-order correlation function gives information about
the photon statistics and describes photon bunching and antibunching.

Note 1.4 It may seem a strange talking about the spectrum of a single
mode field since we normally associate a single mode with a single frequency.
Here we are dealing, however, with what should more correctly be called a
quasimode — a mode defined in a lossy optical cavity, which therefore has a
finite linewidth.

Clearly, averages involving two times cannot be calculated directly from
the master equation — at least, not without a little extra thought. We need to
return to the microscopic picture of system plus reservoir. At this level two-
time averages are defined in the usual way in the Heisenberg representation.
Qur objective, then, is to derive a relationship that allows us to calculate
these averages at the macroscopic level using the master equation for the
reduced density operator alone; thus, in some approximate way we wish to
carry out the trace over reservoir variables explicitly, as we did in deriving
the master equation itself. The result we obtain is known as the quantum
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regression theorem and is attributed to Lax [1.20, 1.21]. We will not follow
Lax in detail, but our method is fundamentally the same as his.

1.5.1 Formal Results

Recall our microscopic formulation of system .S coupled to reservoir R. The
Hamiltonian for the composite system S @ R takes the form given in (1.16).
The density operator is designated x(t) and satisfies Schrodinger’s equation
(1.19). Our derivation of the master equation has given us an equation for
the reduced density operator (1.17), which we will now write formally as

p=Lp; (1.81)

L is a generalized Liouvillian, a “superoperator” in the language of the
Brussells-Austin group [1.22]; £ operates on operators rather than on states.
For the damped harmonic oscillator, from (1.73), the action of £ on an arbi-
trary operator O is defined by the equation

LO = —iwolate, O] + %’(Zaéa* —ataO — Oata)
+ yfi(aOa’ + atOa — atad — Oaat). (1.82)

Within the microscopic formalism multi-time averages are straightfor-
wardly defined in the Heisenberg picture. In particular, the average of a
product of operators evaluated at two different times is given by

(01(t)0:()) = trserlx(0)01(1)Oa()], (1.83)

where O; and O, are any two system operators. These operators satisfy the
Heisenberg equations of motion

A 1. a )
01 = E[OI,HL (184&)
5 1 A
Oq = E[OQ,HL (1.84b)
with the formal solutions
él(t) = e(i/ﬁ')HtC)l (‘0)8—(i/h)Ht, (185&)
Oq(t') = G/MHEY 5, (0)e~(/MHY (1.85b)

From (1.19), the formal solution for x gives
x(0) = el/MHtx(t)e= /WAL, (1.86)

We substitute these formal solutions into (1.83) and use the cyclic property
of the trace to obtain
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(01(1)0a(t')) = trsor /P Hix(£) 01 (0)e/HHW =0 Oy 0)e/MAY
= tIseR [02(0) et "‘)H“"”x(t)ol(n)ewmmt'—t)]
= tr S{@g(O)trR {e—(i/ﬁ.)H(t'—t)X(t)é 1(0) e(i/ﬁ)H(t'-z)]}_
(1.87)

In the final step we have used the fact that O, is an operator in the Hilbert
space of S alone.
We now specialize to the case t’ > ¢t and define

T=t —1t, (1.88)
Xo,(T) = € C/PHTX ()0, (0)e/MHT. (1.89)
Clearly, x o satisfies the equation
dXvo‘l 1]
ar  ih Hoxe,] (1.90)
with R
X6,(0) = x(£)01(0)- (1.91)

If we are to eliminate explicit reference to the reservoir in (1.87), we need to
evaluate the reservoir trace over XOI(T) to obtain the reduced operator

po(T) =trr [x01 ('r)], (1.92)
where
p6.(0) = trr[x(t)01(0)] = tra[x(£)]01(0) = p(t)01(0); (1.93)

notice that pol('r) is just the term trg[ - -] inside the curly brackets in (1.87).
If we then assume that x(t) factorizes as p(t)Ro, in the spirit of (1.29), from
(1.91) and (1.93) we can write

X5,(0) = Rolp(£)01(0)] = Ro py (0). (1.94)

Equations (1.90), (1.92), and (1.94) are now equivalent to (1.19), (1.17), and
(1.25) — namely, to the starting equations in our derivation of the master
equation. We can find an equation for pél(f) in the Born-Markov approxi-
mation following a completely analogous course to that followed in Sects. 1.3
and 1.4. Since (1.19) and (1.90) contain the same Hamiltonian H, using the
formal notation of (1.81), we arrive at the equation

—==Lps (1.95)

with solution
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Po,(T) = €57 [, (0)] = €57 [n(2) 01 (0)). (1.96)
When we substitute for pél(T) in (1.87), we have (7 > 0)

(01(1)05(t + 7)) = trs{O2(0)e~" [p(£)01 (0)]} . (1.97)

Exercise 1.3 Follow the same procedure to obtain (r > 0)

(O1(t+7)05(t)) = tr5{O1(0)e~T[0(0)p(t)]}- (1.98)

Equations (1.97) and (1.98) give formal statements of the quantum re-
gression theorem for two-time averages. To calculate a correlation function
(01(t) 04 (#)O5(t)) we cannot use (1.97) and (1.98) because noncommuting
operators do not allow the reordering necessary to bring O;(t) next to O3 (t).
We may, however, generalize the approach taken above. Specifically, we have

(01(t)02(t') 05 (1))
= trsor | e/MHty(1)0; (0)/DHE -, (0)e= (/M HE 1)
x O3(0)e™/ ﬁ)Ht]
= trsgr TOQ(Q)E-(i/ﬁ)H (t’“i)@a(ﬂ)x(t)@l (0) e(fi/h)H(t’—t)]

= trs{é‘g (U)tm[e_(i/ mH (t'_t)Os(O)X(t)‘jl(O)E(i/h)mt’_t)]} '

(1.99)
Defining ‘ ) ) |
Xp,0,(T) = €~ HPHT03(0)x (1) 01 (0)e/MH7 (1.100)
and
Po,6,7) = trR[X@3@1(T)] (1.101)
as analogs of (1.89) and (1.92), we can proceed as before to the result (1 > 0)
(O1(1)0n(t +7)03(2)) = trs{02(0)e” (03(0)p(1)01(0))}.  (1.102)

Equations (1.97) and (1.98) are, in fact, just special cases of (1.102) with
either Ol(t) or Os(t) set equal to the unit operator.
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1.5.2 Quantum Regression Theorem
for a Complete Set of Operators

It is possible to work directly with the rather formal expressions derived
above. The formal expressions can also be reduced, however, to a more fa-
miliar form [1.20], which is often more convenient for doing calculations.
Essentially, we will find that the equations of motion for expectation values
of system operators {one-time averages) are also the equations of motion for
correlation functions (two-time averages).

We begin by assuming that there exists a complete set of system operators
A#, u=1,2,...,in the following sense: that for an arbitrary operator 0, and

for each A,,
trs[A,(LO)] = Z Muatrs(Ax0), - (1.103)
A

where the M, are constants. In particular, from this it follows that

(A) = trs(Aup) = trs[Au(Lp)]

= ZM“,\trs(A)\p)
)
=Y Mu{4)). (1.104)
A
Thus, expectation values (/1“), p = 1,2,..., obey a coupled set of linear

equations with the evolution matrix M defined by the M) that appear in
(1.103). In vector notation,

(A) = M(A), (1.105)
where A is the column vector of operators A.u, #=1,2,.... Now, using (1.97)
and (1.103) (= = 0):

D (01(t) At + 7)) = trs {4 (0) (LT [0(£)0 (0))}

dr.
=3 Mutrs{Ax(0)e“" [p(£)01(0)]}
A

= ZM#A(Ol(t)AA(t—FT)), (1.106)
A

or,

L (010 At + 1) = MO (1At + 7)), (1.107)

where O; can be any system operator, not necessarily one of the A#. This
result is just what would be obtained by removing the angular brackets from
(1.105) (written with ¢ — ¢ + 7, and - = d/dt — d/dr), multiplying on
the left by O1(t), and then replacing the angular brackets. Hence, for each
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operator 01, the set of correlation functions (Ol(t)A t+7), p=1,2,.
with 7 > 0, satisfies the same equations (as functions of ) as do the averages
(A ,L(t + 7)). This is perhaps the more familiar statement of the quantum
regression theorem.

Exercise 1.4 For 7 > 0 show that
d -~ A N ~ A -
—_— (A(t + 7)0s(1)) = M(A(t +7)02(t)). (1.108)

Thus, we can also multlply (1.105) on the right by Os(t), inside the average.
Also show that

5; (OL@) AL +7)02(8)) = M(O1(H) At + 7)Os(1)). (1.109)

It may appear that this form of the quantum regression theorem is quite
restricted, since its derivation relies on the existence of a set of operators A
p = 1,2,..., for which (1.103) holds. We can show that this is always so,

however, 1f a dlscrete basis |n), n = 1,2,..., exists; although, in general, the
complete set of operators may be very large. Consider the operators

A, = App = In){m|. (1.110)
Then

trs[Anm (£O)] = trs[n)(mj(£0)]
= (m|(LO)|n)

= (m{ LY In'Y o |(n'[Ofm') | )

= 3 ml(ei e Ot

= 5 (e i o 10

— nf Moyt tr5(Apram O), (1.111)
" Mot = () (Ll o) ). (112

In the last step we have interchanged the indices n' and m’. Equation (1.111)
gives an expansion in the form of (1.103). The complete set of operators
includes all the outer products |n)(m|, n = 1,2,..., m = 1,2,...; this may
be a small number of operators, a large but ﬁmte number of uperators, or a
double infinity of operators in the case of the Fock state basis.
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1.5.3 Correlation Functions for the Damped Harmonic Oscillator

We will conclude our discussion of two-time averages with two simple exam-
ples based on the equations for expectation values for the damped harmonic
oscillator [Eqgs. (1.78) and (1.79)]. We first calculate the first-order correlation
function {a'(t)a(t+7)). Equation (1.78) gives the equation of motion for the
mean oscillator amplitude:

(a) = — (% +iwo) (a). (1.113)

Then, with A; = a and O, = at, from (1.105) and (1.107), we may write

d "
—({af()a(t + 7)) = — (2 +iwo) (af (talt + 7). (1.114)
T 9 ) H
-~ y }
Thus A (1.6 cGed>= culare ™
’ (k) _{V&C_@H)

(@ (t)a(t + 7)) = (ol (a(t))e=(r/2+w0)
= [(A(0))e™ + A1 — e~ ™| e=(W/2+iwo)T (1 115)

where the last line follows from (1.80). If the oscillator describes a lossy
cavity mode, in the long-time limit the Fourier transform of the first-order
correlation function

(G'T (O)G(T))ss = tEI&(af (t)‘a;(t + T)) = fe(V/2+iwe)T (]_]_]_6)

gives the spectrum of the light at the cavity output. This is clearly a
Lorentzian with width v (full-width at half-maximum).

Note 1.5 This statement about the spectrum of the light at the cavity out-
put is not strictly correct for the lossy cavity model as we have described it.
The reason is that we have taken the environment outside the cavity to be in
thermal equilibrium at temperature T (it is the environment that is modeled
by the reservoir). Given this, the light detected in the cavity output will be
a sum of transmitted light — light that passes from inside the cavity, through
the cavity output mirror, into the environment — and thermal radiation re-
flected from the outside of the output mirror. Calculating the spectrum at the
cavity output for this situation is more involved (Sect. 7.3.4). Physically, how-
ever, the result is clear; the spectrum must be a blackbody spectrum. The
Lorentzian spectrum obtained from (1.116) would be observed, as filtered
thermal radiation, for a cavity coupled to two reservoirs, one at temperature
" T and the other at zero temperature. If the bandwidth for coupling to the
reservoir at temperature T is much larger than for coupling to the zero tem-
perature reservoir, the master equation (1.73) is basically unchanged. Light
emitted into the zero temperature reservoir then shows the Lorentzian spec-
trum obtained from the Fourier transform of (1.116).
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For a second example we calculate the second-order correlation function
(@t (t)al (t + T)a(t + T)a(t)) = {a ()A(t + 7)a(t)). Writing (1.79) in the form

#(2)=(7 (%) 117)

we set A; = f = ata and Ay =7 (a constant). Then, from (1.105) and
(1.109), with O; = a' and Oy = a,

% ((af(t)zggg);)a(t))) _ (—O'y g)(( ()ﬁgﬁ( ))) ()))_ (1.118)

Thus,
(@l (At + m)a(t)) = (@' (OAt)a(t)e™™ + ARE)) (1 ~e™7).  (1.119)

We obtained an expression for (7(t)) in (1.80). The calculation of (a'(t)7(t)
a(t)) is left as an exercise:

Exercise 1.5 Derive an equation of motion for the expectation value (af(t)
i(t)a(t)) = (at?(t)a?(t)) from the master equation (1.73) and show that

(o’ (D)a(t)a()) = [(7*(0)) — (7(0))] €™ + 2n(1 — ™)
x [2(A(0))e™ " +A(l -], (1.120)

Now, substituting from (1.80) and (1.120) into (1.119),
(' ()al (t + T)a(t + T)a(2))

= {[(*(0)) — (2(0))] e + 27(1 — &= "*)[2(A(0) )¢~ *
+7(1 — e )]} e " + n[(A(0))e " + A(1 — e” ") (1 —e™ ).
(1.121)
In the long-time limit, the second-order correlation function is
(at (0)a (r)a(r)a(0))e = Jim (af ()al (¢ + T)alt + T)a(t)
=7 (1+e 7). (1.122)

This expression describes the well-known Hanbury-Brown-Twiss effect, or
photon bunching, for thermal light [1.23]; at zero delay the correlation func-
tion has twice the value it has for long delays (y7 > 1).

Note 1.6 The correlation time, 1/v, in (1.122) holds for filtered thermal
light in accord with the comments in Note 1.5.
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